スクライビングホイールによる硬脆単結晶材料ウエハの

精密スクライビング・割断の基礎研究

鈴木浩文

岡田 睦,森田 晋也(東京電機大学),福西 利夫(三星ダイヤモンド工業㈱)

半導体ウェハ基板チップの切断,LED 用サファイヤ基板チップの切断,液晶やスマー トフォン用などの表示デバイス用ガラスパネルの切断の高能率化・高精度化のニーズ が増大している.従来はダイヤモンドブレード(砥石)によるダイシング、レーザ光を 用いた切断・割断などにより行われているが、能率が低い、カーフロスが大きい、洗浄 の必要性などの問題点がある. それに対して、本提案のスクライビング・割断は先端 の尖ったダイヤモンド製スクライビングホイールにより切断基板に圧痕(スクラッチ) を付け、曲げ応力で割断する方法であり、(1)加工効率高い、(2)カーフロスが少ない、 (3)洗浄が不要,などのため期待される. 脆性材料においても塑性流動させてクラック の無い溝を設けることが理論的には出来る.本研究では単結晶ダイヤモンド製スクラ イビングホイールを研削・研磨加工し、車載用のパワーデバイス用半導体の有力候補 となっている SiC ウェハのスクライビング実験を行い、結晶方位による影響について 基礎的な検討を行った. 実験ではダイヤモンド砥石, 遊離砥粒などを用い, 研削・研磨 条件を変化させ、スクライビングホイールの試作を行い、刃先の開き角、刃先先端 R の影響などを実験的に調べ、ホイールの刃先先端の形状と表面粗さが、SiC 基板のス クラッチ深さ,残留応力,スクラッチ部の表面粗さなどに与える影響について検討し たので報告する.

1. はじめに

半導体ウェハ基板チップの切断, LED 用サファイヤ基板チップの切断, 液晶やスマートフォン用などの表 示デバイス用ガラスパネルの切断の高能率化・高精度化のニーズが図1に示すように増大している. 従来は 図2に示すように、ダイヤモンドブレード(砥石)によるダイシング, レーザ光を用いた切断・割断などにより行 われている. しかし, 能率が低い, カーフロスが大きい, 洗浄の必要性などの問題点がある. それに対して, 本提案のスクライビング・割断は先端の尖ったダイヤモンド製スクライビングホイールにより切断基板に圧痕 (スクラッチ)を付け, 曲げ応力で割断する方法であり, (1)加工効率高い, (2)カーフロスが少ない, (3)洗浄が 不要, などのため期待される. 脆性材料においても塑性流動させてクラックの無い溝を設けることが理論的 には出来る.

スクライビングホイールによる切断プロセスでは、多結晶ダイヤモンド製(PCD)のブレードが用いられ、ス クライビング・割断は液晶用ガラス基板の切断が工業化されているが、脆性モードのスクライビングであり、ガ ラス基板に加工変質層も大きく生じ、カーフロスが皆無ではない.また切断プロセス後の仕上げ加工の研磨 工程・洗浄工程も不可欠であり、現状において課題が多い.さらに単結晶 SiC などの半導体ウェハに適用す るには、単結晶ダイヤ半導体ウェハ基板チップの切断、LED 用サファイヤ基板チップの切断、液晶やスマートフォン用などの表示デバイス用ガラスパネルの切断の高能率化・高精度化のニーズが高い. 従来はダイヤモンドブレード(砥石)によるダイシング、レーザ光を用いた切断・割断などにより行われている. しかし、能率が低い、カーフロスが大きい、洗浄の必要性などの問題点がある. それに対して、本提案のスクライビング・割断は先端の尖ったダイヤモンドブレードにより切断基板に圧痕(スクラッチ)を付け、曲げ応力で割断する方法であり以下の特徴を有する.

(1) 基板表面にスクラッチをつけ、曲げ応力で割断するだけであるため、高速に加工が行え、加工効率が高い.

(2) ダイヤモンドブレード(砥石)ダイシングなどのような除去加工を行わないため,材料の除去はほぼ無く, カーフロスが少ない.

(3) クーラントなどを用いないため洗浄が不要である.

(4) 硬脆材料においても塑性流動させてクラックの少ない V 溝(スクラッチ)加工が論理的には出来る.

しかし現状では、多結晶ダイヤモンド製(PCD)のブレードが用いられ、スクライビング・割断は液晶用ガラス 基板の切断が工業化されているが、脆性モードのスクライビングであり、ガラス基板に加工変質層も大きく生 じ、カーフロスが皆無ではない.また切断プロセス後の仕上げ加工の研磨工程・洗浄工程も不可欠であり、 現状において課題が多い.さらに単結晶 SiC などの半導体ウェハに適用するには、単結晶ダイヤ モンド(SCD)製のスクライビングホイールの加工技術の開発が不可欠であり、先端が尖った SCD ホイールに より静水圧応力場を付加しながら、結晶材料において原子レベルの塑性流動現象を生じさせて、切りくずの 無い延性モードのスクライビングの実現が不可欠である.

図1 硬質脆性材料製基板の切断のニーズ

図2 硬質脆性材料製基板の切断の一般的な切断プロセスと問題点

本研究では単結晶ダイヤモンド製スクライビングホイールを研削・研磨加工し、車載用のパワーデバイス 用半導体の有力候補となっている SiC ウェハのスクライビング実験を行い、結晶方位による影響について基 礎的な検討を行った.実験ではダイヤモンド砥石、遊離砥粒などを用い、研削・研磨条件を変化させ、スクラ イビングホイールの試作を行い、刃先の開き角、刃先先端 R の影響などを実験的に調べ、ホイールの刃先 先端の形状と表面粗さが、SiC 基板のスクラッチ深さ、残留応力、スクラッチ部の表面粗さなどに与える影響 について検討したので報告する.

2. 単結晶ダイヤモンド製マイクロホイールの研削加工・研磨加工

図3に示すように、単結晶ダイヤモンド製マイクロフライス工具の形状を設計し、CAMデータを作成し、単結晶ダイヤモンドを円筒形状に創成する.次に研磨ジグに取付け、両面を斜め研削加工した.次いで、ダイヤモンド砥粒(遊離砥粒)を付加しながら定圧研磨する.こうして、図4に示すような算盤玉状のダイヤモンドホイールを試作した.

単結晶ダイヤモンドの結晶方位による硬度, へき開性, 耐摩耗性を考慮し, 工具形状, 方位を決定する 方法を構築する. ホイール刃先のアールがスクライビング特性に与える影響を比較するため, ダイヤモンドホ イールの先端の開き角(図 4)が 90°, 100°, 110°, 120°, 130°と異なった 5 種類のホイールを試作し た. スクライビングホイールの研削加工・研磨加工で用いた加工装置を図 5 に示す.

スクライビングホイールの中央に約 φ 1mm の穴が有り, ステンレス製のピンに取付け, モータにより回転さ せながら, ダイヤモンド製研削砥石により研削加工した.研削砥石には WA 製のスティック砥石が一定圧力 で取り付けられ, インプロセスドレッシングしながら研削した.研削条件を表 1 に示す.ダイヤモンド砥石はダ イヤもンドの加工により, 表面の砥粒が摩滅し切れ刃が無くなるが, この WA 砥石の作用で砥石表面の目詰 まりが除去され, 継続的に研削加工が行われる. さらに, WA 砥石のドレッシングにより遊離した WA 砥粒に よる研磨加工も同時に複合される.

割断法の加工プロセスは図6に示すようにスクライビングとブレイキングの2工程から成っている.まずス クライビング工程でスクライビングホイールを基板上に転動することによりスクラッチを入れる.この時点で,ス クライビングホイールが接触した部分にスクラッチから伸展し「クラック」が形成される.最後にブレイキング工 程で曲げ応力により引張応力を集中させることで,クラックが伸展し基板が割断される⁽²⁾.

今回の実験では、スクライビング後のスクラッチについて荷重による圧痕(スクライビング)の深さ、幅、スク ラッチ部の表面粗さ、圧痕(スクライビング)周辺の残留応力(ひずみ)について単結晶 SiC ウエハの C 面、 Si 面について評価した.また、結晶方位によるスクライビング特性の影響についても評価した.

図3 単結晶ダイヤモンド製マイクロ・ダイヤモンドホイールの創成プロセス

図4 ダイヤモンド製スクライビングホイールの図および写真

砥石 外径 粒度 回転数 周速度	ダイヤモンドホイール(カップ型)	
ドレッサ 送り速度	WA#4000 1.0 μm/s	
クーラント	ソリューションタイプ	
スクライビングホイール 外径 回転数 周速度	PCD (焼結多結晶ダイヤモンド)	
稜線に対する研削方向	0	
 切込み 切込み速度	15μm×2回 0.2μm/s	

表1 研削条件

3. 実験方法

本実験で用いたスクライビング装置の概略図および外観を図7および図8に示す.研削加工・研磨加工 で算盤玉状に試作したスクライビングホイールをスクライビング装置に取り付けた.ワークとなるSiCウエハ基 板を真空チャックによりステージ上に固定した.スクライビング工程では、単結晶ダイヤモンド製のスクライビ ングホイールに空気圧により一定荷重を付加しながら、ステージを手動でスライドさせることにより、スクライビ ングホイールをSiC 基板上に転動させてスクラッチを施した.また、SiC 基板は結晶方位オリフラを基準に平 行方向と、直行方向になるように真空チャックでステージに設置してスクライビング加工を行った. スクライビング工程の加工条件を表 2 に示す.研削加工・研磨加工により試作した単結晶ダイヤモンド製 スクライビングホイールを用いてスクライビング実験を行った.スクライビングホイールには刃先角度が 90°, 100°,110°,120°,130°のものを試作して,刃先角度によるスクライビング特性と残留応力を計測し,相 関性を調べた.

図7 スクライビング装置の概略図

図8 スクライビング装置の外観

スクライビングホイール	SCD(単結晶ダイヤモンド)
外径	Φ2mm
刃先角度	90°, 100°, 110°, 120°, 130°
ワーク	SiC ウェハ
板厚	0.2mm
荷重	1.2, 2.0, 2.8, 5.1, 9.0N
ワークの固定方法	真空チャック

表2 スクライビング工程の加工条件

4. SiC ウェハへのスクライビング加工の結果

スクライビング後の SiC ウエハ表面の写真を図 9 に示す.写真から荷重が増加するにつれスクラ ッチが太くなっていることがわかる.また,刃先角度が大きいほど,クラックが少なく 90°,100° ではほぼ全面にクラックが発生している状態であった.

さらに、オリフラに垂直にスクライビングした場合の方がクラックやカレット(クラックが割れて飛散した粉)が 少なかった.スクライビング後の SiC 基板のスクラッチの深さと幅を非接触レーザプローブ測定器(NH-3UP) で測定した結果を図 10 および図 11 に示す.いずれのスクライビングホイールを使用しても荷重が増えるに つれ、スクラッチ深さや幅が増加していることがわかる.

刃先角度	荷重	オリフラに平行	オリフラに垂直
0	N	(S 面)	(C 面)
90	1.2		
	2.0		100µm
	2.8		
	5.1		
	9.0		
100	1.2		n a fe mandalisticas de la terra de la composición de la
	2.0		
	2.8		
	5.1		
	9.0		
110	1.2	ada dina mana	
	2.0		
	2.8	State of the second sec	
	5.1		
	9.0		
120	1.2		
	2.0		
	2.8		
	5.1		
	9.0		
130	1.2		
	2.0		
	2.8		
	5.1		
	9.0		

図9 スクライビング後のSiC ウェハ表面のノマルスキ顕微鏡写真

図 12 スクライビング後の SiC ウェハ表面の比較(表面粗さ Rz)

次にスクライビング後のスクラッチ部の表面粗さを測定した結果を図 12 および図 13 に示す.同じく,荷 重が増加するにつれて表面粗さが悪化している傾向があるが,刃先角度が小さいものはスクライビング荷重 が小さくても表面粗さが悪いことがわかる.これは,刃先が鋭利なため,スクライブが入りやすくなり,先端に 荷重がかかりすぎてクラックが生じやすくなってしまうためであると考えられる.オリフラに平行に加工した場 合にその傾向が強い.これは単結晶 SiC の結晶方位とスクライビングの方位との関係性によるものであると 考えられる.以上の結果から,延性モードの塑性流動現象を利用するには,刃先角度 120°から 130°,ス クライビング荷重 2.0N 以下が望ましいことがわかる.

5. SiC ウェハへのスクライビング加工後の残留応力

次に、スクライビング加工は圧力を加えることによりスクラッチを形成しているため、残留応力が発生することが考えられる.そこで複屈折評価装置 WPA-micro(フォトニックラティス製)を用いて位相差の評価を行い 残留応力の推定を行った.図 14 評価装置の外観を示す.測定原理は、フォトニック結晶技術を利用し、素 子、複屈折位相差を計測し、残留応力を定量的に測定するものである.

この計に装置で,スクライビングを施した SiC ウエハ基板の複屈折を計測した測定例を示す.測定は,① スクライブラインを含む領域を指定し,②ベースラインを読み取り,③測定エリア内での位相差データの度数 分布と位相差の三次元分布図を照らし合わせて測定エリア内に置ける位相差の値を読み取り,ベースライ ンを差し引いて測定エリア内での位相差とした.

SiC 基板上のスクライビング部周辺の位相差の測定結果の三次元分布図を図 15 に示す. スクラッチ周辺 で残留応力が高まっているのがわかる.

上記の測定結果を基に、スクライビングホイールの刃先角度を 90°, 100°, 110°, 120°, 130°と変 化させ、スクライビング荷重を変化させて得られた、位相差(加工変質層の強度)を計測した.

図14 複屈折評価装置 WPA-micro(フォトニックラティス製)の外観

図15 複屈折装置での位相差の測定

測定結果から、位相差の強度をグラフ化した結果を図16に示す.スクライビング荷重が増加するにつれ、 位相差も増大している傾向があるが、スクライビング荷重が小さい時は刃先角度が大きい方が位相差が減 少する傾向があることがわかる.

図16スクライビング後の位相差の強度

6. おわりに

本実験では刃先先端の形状が異なる単結晶ダイヤモンド製スクライビングホイールを研削・研磨加工により試作し、そのスクライビングホイールを用いて、単結晶 SiC ウェハにスクライビング加工を行った.加工後のワークについて計測評価し、スクライビングホイールのスクライビング加工への影響について調べた.その結果、延性モードの塑性流動現象を利用するには、刃先角度 120°から 130°、スクライビング荷重 2.0N 以下が適切であり、残留応力が小さく良好であることが明らかとなった.

謝辞

本試験研究は、公益財団法人工作機械振興財団第 39 次試験研究助成により行われた.関係各位に 謝意を表します.

参考文献

- 留井直子,福西利夫:ガラス切断用工具におけるダイヤモンド材料の進歩,砥粒加工学会誌, 60, 6 (2016) p.314.
- 留井直子,村上健二ほか:セラミックス切断用スクライビングホイールの開発とその切断技術, 砥粒加工学会誌,59,12(2015) pp.705-706.